A fast cost scaling algorithm for submodular flow
نویسندگان
چکیده
This paper presents the current fastest known weakly polynomial algorithm for the submodular flow problem when the costs are not too big. It combines Röck’s or Bland and Jensen’s cost scaling algorithms, Cunningham and Frank’s primal-dual algorithm for submodular flow, and Fujishige and Zhang’s push-relabel algorithm for submodular maximum flow to get a running time of O(nh logC), where n is the number of nodes, C is the largest absolute value of arc costs and h is the time for computing an exchange capacity in an instance of this problem.
منابع مشابه
Core Discussion Paper 9947 a Faster Capacity Scaling Algorithm for Minimum Cost Submodular Flow
We describe an O(nh min{log U, n log n}) capacity scaling algorithm for the minimum cost submodular flow problem. Our algorithm modifies and extends the Edmonds–Karp capacity scaling algorithm for minimum cost flow to solve the minimum cost submodular flow problem. The modification entails scaling a relaxation parameter δ. Capacities are relaxed by attaching a complete directed graph with unifo...
متن کاملA Capacity Scaling Algorithm for M-convex Submodular Flow
This paper presents a faster algorithm for the M-convex submodular flow problem, which is a generalization of the minimum-cost flow problem with an M-convex cost function for the flow-boundary, where an M-convex function is a nonlinear nonseparable discrete convex function on integer points. The algorithm extends the capacity scaling approach for the submodular flow problem by Fleischer, Iwata ...
متن کاملA faster capacity scaling algorithm for minimum cost submodular flow
We describe an O(nhmin{logU, n log n}) capacity scaling algorithm for the minimum cost submodular flow problem. Our algorithm modifies and extends the Edmonds–Karp capacity scaling algorithm for minimum cost flow to solve the minimum cost submodular flow problem. The modification entails scaling a relaxation parameter δ. Capacities are relaxed by attaching a complete directed graph with uniform...
متن کاملA Strongly Polynomial Cut Canceling Algorithm for Minimum Cost Submodular Flow
This paper presents a new strongly polynomial cut canceling algorithm for minimum cost submodular flow. The algorithm is a generalization of our similar cut canceling algorithm for ordinary min-cost flow. The algorithm scales a relaxed optimality parameter, and creates a second, inner relaxation that is a kind of submodular max flow problem. The outer relaxation uses a novel technique for relax...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 74 شماره
صفحات -
تاریخ انتشار 2000